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5.1 Let M be a di�erentiable manifold and ∇ a connection on M.

(a) Show that there exists no (1, 2)-type tensor �eld A on M with the property that, in any
local coordinate system (x1, . . . , xn) on M

Ak
ij = Γk

ij.

Hint: Check how Γk
ij transforms under changes of coordinates.

(b) Show that the torsion T : Γ(M)× Γ(M) → Γ(M) of the connection ∇, which is de�ned
by

T (X, Y ) = ∇XY −∇YX − [X, Y ],

is a tensor �eld.

(c) Let ∇̄ be a (possibly) di�erent connection on M. Show that the di�erence ∇ − ∇̄ :
Γ(M) × Γ(M) → Γ(M) is also a tensor �eld. Deduce that, there exists a (1, 2)-type
tensor �eld A such that, in any given local coordinate system (x1, . . . , xn),

Ak
ij = Γk

ij − Γ̄k
ij

where Γk
ij and Γ̄k

ij are the Christo�el symbols of ∇ and ∇̄, respectively.

Solution. (a) Assume that there exists a tensor �eld A as in the statement. Then, if (x1, . . . , xn)
and (y1, . . . , yn) are two coordinate systems around the same point p ∈ M, the components Ak

ij and

Ãk
ij of A in the two coordinate systems, respectively, are related by the transformation formula

Ãk
ij = Aγ

αβ ·
∂yk

∂xα

∂xβ

∂yi
∂xβ

∂yj
. (1)

On the other hand, the Christo�el symbols Γk
ij and Γ̃k

ij in the coordinate systems (x1, . . . , xn) and
(y1, . . . , yn), respectively, are given by the relations

Γk
ij = dxk

(
∇ ∂

∂xi

∂

∂xj

)
and

Γ̃k
ij = dyk

(
∇ ∂

∂yi

∂

∂yj

)
=

∂yk

∂xγ
dxγ

(
∇ ∂xα

∂yi
· ∂
∂xα

(∂xβ

∂yj
· ∂

∂xβ

)
=

∂yk

∂xγ
· ∂x

α

∂yi
· dxγ

(
∇ ∂

∂xα

(∂xβ

∂yj
· ∂

∂xβ

)
=

∂yk

∂xγ
· ∂x

α

∂yi
· dxγ

( ∂

∂xα

(∂xβ

∂yj
)
· ∂

∂xβ
+

∂xβ

∂yj
· ∇ ∂

∂xα

( ∂

∂xβ

)
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=
∂yk

∂xγ
· ∂x

α

∂yi
·
( ∂

∂xα

(∂xβ

∂yj
)
· dxγ

( ∂

∂xβ

)
+

∂xβ

∂yj
· dxγ

(
∇ ∂

∂xα

( ∂

∂xβ

))
=

∂yk

∂xγ
· ∂x

α

∂yi
· ∂

∂xα

(∂xγ

∂yj
)
+ Γγ

αβ ·
∂yk

∂xγ
· ∂x

α

∂yi
· ∂x

β

∂yj

(note that we used the fact that that dxk(·) is a tensor �eld and, thus, is C∞(M)-linear in its
argument). Therefore, we see that the transformation law for the Christo�el symbols contains an

additional term which is not there in (1), namely ∂yk

∂xγ · ∂x
α

∂yi
· ∂
∂xα . Expressing the coordinates y

i = yi(x)

as functions of (x1, . . . , xn), this term is equal to

[Dy]kγ ·
(
[Dy]−1

)α
i
·
( ∂

∂xα

(
[Dy]−1

)β
j

)
where [DY ]iα = ∂yi

∂xα is the Jacobian matrix for y. In particular, if the second derivatives of the
transformation x → y(x) at p ∈ M are not all 0, then this term will have a non-zero at p. Therefore,
Γk
ij does not transform under coordinate changes like a tensor �eld.

(b) In order to show that T is a tensor �eld, it su�ces to show that it is C∞(M)-linear in its
arguments; since T obviously satis�es T (X1+X2, Y ) = T (X1, Y )+T (X2, Y ) (because ∇ and [·, ·] are
R-linear in their arguments) and T (X, Y ) = −T (Y,X), it su�ces to show that, for any X, Y ∈ Γ(M)
and f ∈ C∞(M):

T (f X, Y ) = f T (X, Y ).

Recall that the Lie bracket [·, ·] satis�es for any

[f X, Y ] = f [X, Y ]− Y (f) ·X

since, for any h ∈ C∞(M):

[f X, Y ](h) = f X
(
Y (h)

)
−Y

(
fX(h)

)
= f X

(
Y (h)

)
−Y (f)X(h)−f Y

(
X(h)

)
= f [X, Y ](h)−Y (f)X(h).

Using the above observation and the fact that ∇ is C∞(M) in its �rst argument and satis�es the
Leibniz rule with respect to its second argument, we can calculate:

T (f X, Y ) = ∇fXY −∇Y (fX)− [fX, Y ]

= f∇XY − Y (f)X − f∇YX − f [X, Y ] + Y (f)X

= f ·
(
∇fXY −∇Y (fX)− [X, Y ]

)
= f T (X, Y ).

(c) As before, we have to verify that ∇−∇̄ is C∞(M)-linear in both its arguments; since, by the
de�nition of a connection, both ∇ and ∇̄ are C∞(M)-linear in their �rst argument and R-linear in
their second argument, it remains to prove that, for any X, Y ∈ Γ(M) and f ∈ C∞(M):

(∇− ∇̄)(X, f Y ) = f (∇− ∇̄)(X, Y ).
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Indeed:

(∇− ∇̄)(X, f Y ) = ∇X(f Y )− ∇̄X(f Y )

= X(f)Y + f ∇XY −X(f)Y − f ∇̄XY

= f ∇XY − f ∇̄XY

= f (∇− ∇̄)(X, Y ).

Therefore, setting A(X, Y )
.
= (∇ − ∇̄)(X, Y ) = ∇XY − ∇̄XY , we have shown that A : Γ(M) ×

Γ(M) → Γ(M) is a (1, 2)-tensor �eld; it is easy to verify that, in any local coordinate system
(x1, . . . , xn), the components Ak

ij of A take the form

Ak
ij = Γk

ij − Γ̄k
ij.

5.2 Let Ψ : Mn → R
n+1 be an immersion such that Ψ(M) is a spacelike hypersurface of (Rn+1, η)

and let ḡ = Ψ∗η be the induced metric. Let (x1, . . . , xn) be a local coordinate chart on
M. Compute the Christo�el symbols Γk

ij of the Levi-Civita connection associated to ḡ in
the (x1, . . . , xn) coordinates as functions of Ψ and its derivatives.

Solution. Let (x1, . . . , xn) be a local coordinate chart on M. The components ḡij of the induced
metric ḡ on this chart takes the form

ḡij = ḡ
( ∂

∂xi
,

∂

∂xj

)
= η

(
Ψ∗( ∂

∂xi

)
,Ψ∗( ∂

∂xj

))
= ηαβ

∂Ψα

∂xi

∂Ψβ

∂xj
.

We can then compute
∂ḡjk
∂xi

= ηαβ
∂2Ψα

∂xi∂xj

∂Ψβ

∂xk
+ ηαβ

∂Ψα

∂xj

∂2Ψβ

∂xi∂xk
.

Since we assumed that Ψ(M) is spacelike, the induced metric ḡ is Riemannian. In particular, the
matrix [ḡij] is invertible; denoting with ḡij the components of the inverse matrix of ḡij, we can readily
compute

Γk
ij =

1

2
ḡkl

(
∂iḡlj + ∂j ḡli − ∂lḡij

)
=

1

2
ḡklηαβ

( ∂2Ψα

∂xi∂xl

∂Ψβ

∂xj
+

∂Ψα

∂xl

∂2Ψβ

∂xi∂xj
+

∂2Ψα

∂xj∂xl

∂Ψβ

∂xi
+

∂Ψα

∂xl

∂2Ψβ

∂xi∂xj

− ∂2Ψα

∂xi∂xl

∂Ψβ

∂xj
− ∂Ψα

∂xi

∂2Ψβ

∂xj∂xl

)
= ḡklηαβ

∂Ψα

∂xl

∂2Ψβ

∂xi∂xj

(where, in passing to the last line above, we used the fact that ηαβ is symmetric in α, β to write

ηαβ
∂2Ψα

∂xj∂xl
∂Ψβ

∂xi = ηαβ
∂Ψα

∂xi
∂2Ψβ

∂xj∂xl ).
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Remark. An alternative way to view the above formula is as follows: Since Ψ(M) is a spacelike
hypersurface of (Rn+1, η) of dimension n, for any p ∈ M the tangent space TΨ(p)Ψ(M) (which is
simply the image of dΨ : TpM → TΨ(p)R

n+1) is a spacelike hyperplane of TΨ(p)R
n+1 of codimension

1. Let us denote with Π⊤
p : TΨ(p)R

n+1 → TpM the composition of the orthogonal projection (with
respect to η) TΨ(p)R

n+1 → TΨ(p)Ψ(M) with the linear isomorphism (dΨ)−1 : TΨ(p)Ψ(M) → TpM.
Then, it is easy to verify that the map Π⊤

p expressed with respect the Cartesian frame {eα}nα=0 on

TΨ(p)R
n+1 and the

{
∂
∂xi

}n

i=1
frame on TpM takes the form

(Π⊤
p )

k
α = ḡkl|p · ηαβ ·

∂Ψβ

∂xl
(p)

(you should be able to verify this by noting that Π⊤
p maps Ψ∗(∂i) = ∂Ψα

∂xi eα to ∂i and any vector

η-orthogonal to TΨ(p)Ψ(M) = span
{
Ψ∗(∂i)

}n

i=1
is mapped to 0). Then, the above expression for the

Christo�el symbols of ḡ can be reexpressed as

Γk
ij = (Π⊤)kβ

∂2Ψβ

∂xi∂xj
.

Note that, since Ψ∗(∂i) = ∂Ψα

∂xi eα, the term ∂2Ψβ

∂xi∂xj is simply the α-th component of ∇(η)
Ψ∗(∂i)

Ψ∗(∂j),

where ∇(η) is the �at connection on R
n+1. Thus, the induced connection on M via Ψ is just the

orthogonal projection onto Ψ(M) of the �at connection on Rn+1.

5.3 Let M be a smooth manifold equipped with a connection ∇. We can extend the connection ∇
to a map ∇ : Γ(M)× Tenk

l (M) → Tenk
l (M) by the requirements that

� ∇ satis�es the Leibniz rule with respect to tensor products, i.e. for all X ∈ Γ(M)

∇X(f ⊗ g) = ∇Xf ⊗ g + f ⊗∇Xg,

� ∇ commutes with contractions, i.e.

∇X(trA) = tr
(
∇XA).

Show that, in any local coordinate chart (x1, . . . , xn), if Γk
ij are the Christo�el symbols of ∇

then, for every 1-form ω:
(∇ ∂

∂xi
ω)j = ∂iωj − Γk

ijωk.

Moreover, for any (k, l)-tensor �eld T :

(∇ ∂
∂xa

T )i1...ikj1...jl = ∂aT
i1...ik

j1...jl
+Γi1

abT
bi2...ik

j1...jl
+ . . .+ Γik

abT
i1...ik−1b

j1...jl

− Γb
aj1

T bi2...ik
bj2...jl

− . . .− Γb
ajl
T

i1...ik−1b
j1...jl−1b

.
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Solution. We will start by observing that, for any 1-form ω and any vector �eld X on M, the
function ω(X) ∈ C∞(M) can be seen as the contraction tr(ω ⊗X) of the (1, 1)-tensor �eld ω ⊗X;
this can be seen clearly in local coordinates, since

(ω ⊗X)ij
.
= ωiX

j and ω(X) = ωkX
k.

Therefore, using our assumptions that ∇X(f ⊗ h) = ∇Xf ⊗ h + f ⊗ ∇Xh and ∇ commutes with
contractions, we obtain for any X, Y ∈ Γ(M):

Y
(
ω(X)

)
= Y

(
tr(ω ⊗X)

)
= tr

(
∇Y (ω ⊗X)

)
= tr

(
∇Y ω ⊗X + ω ⊗∇YX

)
= ∇Y ω(X) + ω

(
∇YX

)
.

By rearranging the terms in the above identity, we thus obtain:

∇Y ω(X) = Y
(
ω(X)

)
− ω

(
∇YX

)
.

In any given local coordinate system (x1, . . . , xn) on M, if we apply the above formula for X = ∂
∂xj

and Y = ∂
∂xi we obtain: (

∇ ∂

∂xi
ω
)
j
= ∂i(ωj)−

(
∇∂i∂j

)k
ωk

= ∂i(ωj)− Γk
ijωk.

In particular, if ω = dxk is a coordinate 1-form, then

∇∂i(dx
k) = −Γk

ijdx
j.

If T is a tensor �eld of type (k, l), then it can be expressed in a local coordinate system (x1, . . . , xn)
as before as a linear combination of the coordinate (k, l)-tensor �elds ∂

∂xγ1
⊗· · ·⊗ ∂

∂xik
⊗dxδ1⊗· · ·⊗dxδl ,

γ1, . . . , γk, δ1, . . . , δl ∈ {1, . . . , n}:

T = T γ1...γk
δ1...δl

∂

∂xγ1
⊗ · · · ⊗ ∂

∂xγk
⊗ dxδ1 ⊗ · · · ⊗ dxδl . (2)

Our assumption on the behaviour of ∇ on tensor products and the fact that ∇ satis�es the Leibniz
rule implies that, for any f ∈ C∞(M), any X ∈ Γ(M) and any (Y(1), . . . , Y(1), ω(1), . . . , ω(l)) ∈
Γ(M)× · · · × Γ(M)× Γ∗(M)× · · · × Γ∗(M), we have

∇X

(
f Y(1) ⊗ · · · ⊗ Y(k) ⊗ ω(1) ⊗ · · · ⊗ ω(l)

)
= X(f)Y(1) ⊗ · · · ⊗ Y(k) ⊗ ω(1) ⊗ · · · ⊗ ω(l)

+ f (∇XY(1))⊗ · · · ⊗ Y(k) ⊗ ω(1) ⊗ · · · ⊗ ω(l)

+ . . .+ f Y(1) ⊗ · · · ⊗ (∇XY(k))⊗ ω(1) ⊗ · · · ⊗ ω(l)

+ f Y(1) ⊗ · · · ⊗ Y(k) ⊗∇X(ω(1))⊗ · · · ⊗ ω(l)

+ . . .+ f Y(1) ⊗ · · · ⊗ Y(k) ⊗ ω(1) ⊗ · · · ⊗ (∇Xω(l)).
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Therefore, applying this formula for the ∇ ∂
∂xα

derivative of the expression (2) and using the fact that

∇∂α

∂

∂xi
= Γj

αi

∂

∂xj
, ∇∂α(dx

i) = −Γi
αjdx

j

(the last formula following from our computation of the expression of ∇ acting on 1-forms), we
obtain:

∇∂αT = (∂αT
γ1...γk

δ1...δl
)

∂

∂xγ1
⊗ · · · ⊗ ∂

∂xγk
⊗ dxδ1 ⊗ · · · ⊗ dxδl

+ T γ1...γk
δ1...δl

Γβ
αγ1

∂

∂xβ
⊗ · · · ⊗ ∂

∂xγk
⊗ dxδ1 ⊗ · · · ⊗ dxδl

+ . . .+ T γ1...γk
δ1...δl

Γβ
αγk

∂

∂xγ1
⊗ · · · ⊗ ∂

∂xβ
⊗ dxδ1 ⊗ · · · ⊗ dxδl

− T γ1...γk
δ1...δl

Γδ1
αβ

∂

∂xγ1
⊗ · · · ⊗ ∂

∂xγk
⊗ dxβ ⊗ · · · ⊗ dxδl

− . . .− T γ1...γk
δ1...δl

Γδl
αβ

∂

∂xγ1
⊗ · · · ⊗ ∂

∂xγk
⊗ dxδ1 ⊗ · · · ⊗ dxβ.

Therefore, considering the ∂
∂xi1

⊗ · · · ⊗ ∂
∂xik

⊗ dxj1 ⊗ · · · ⊗ dxjl component of the above expression
(noticing that, in each summand involving Γ, an index of Γ is contracted with one index of T , and
we are free to rename those indices as we please), we obtain

(∇ ∂
∂xa

T )i1...ikj1...jl = ∂aT
i1...ik

j1...jl
+Γi1

abT
bi2...ik

j1...jl
+ . . .+ Γik

abT
i1...ik−1b

j1...jl

− Γb
aj1

T i1i2...ik
bj2...jl

− . . .− Γb
ajl
T i1...ik

j1...jl−1b
.

5.4 Let (M, ḡ) be a Riemannian manifold (i.e. ḡ is positive de�nite) and let us de�ne the Lorentzian
manifold (M, g) so thatM = R×M and g is the product metric g = −(dt)2+ḡ; this means that,
for every local coordinate chart (x1, . . . , xn) on U ⊂ M, if we extend it to a local coordinate
chart (t, x1, . . . , xn) on R× U ⊂ M so that t is simply the projection on the R factor, then

g = −dt2 + ḡijdx
idxj.

Show that a curve γ : (0, 1) → (M, g) is a geodesic (for the Levi-Civita connection of g) if and
only, in any local coordinate system (t;x1, . . . , xn) as above, if it can be written in the form

γ(s) = (t(s); γ̄i(s))

where t(s) = λ1s+ λ0 for some λ1, λ0 ∈ R and γ̄ : (0, 1) → M is a geodesic of (M, ḡ).

Solution. For any p ∈ M, let (x0, x1, . . . , xn) = (t, x1, . . . , xn) be a local coordinate system around
p which is as described in the statement of the exercise. We will adopt the following convention: We
will use Greek letters (i.e. α, β, γ, . . .) for indices ranging from 0 to n and Latin letters (i.e. i, j, k, . . .)
for indices ranging from 1 to n. With this notation, the components gαβ of g take the form

g00 = −1, g0i = 0, gij = ḡij.
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Therefore, we can also calculate that the components gαβ of the inverse matrix of [g] take the form

g00 = −1, g0i = 0, gij = ḡij

(where ḡij are the components of the inverse matrix of [ḡij]).
Let us, now turn to calculating the Christo�el symbols Γδ

αβ of g. Using the formula

Γδ
αβ =

1

2
gδλ

(
∂αgλβ + ∂βgλα − ∂λgαβ

)
,

we can readily verify that

Γδ
αβ = 0 when at least one of α, β, δ is 0

and
Γk
ij = Γ̄k

ij when i, j, k ∈ {1, . . . , n},
where Γ̄k

ij are the Christo�el symbols of ḡ.

Let γ : (0, 1) → M, γ(s) =
(
x0(s), x1(s), . . . , xn(s)

)
be a geodesic of g. Thus, the components of

γ satisfy the geodesic ODE
ẍα + Γα

βδẋ
βẋδ = 0.

Applying the above relation for α = 0 and using the fact that (as we calculated) Γ0
βγ = 0, we obtain

ẍ0(s) = 0 ⇒ x0(s) = λ1s+ λ0 for some λ0, λ1 ∈ R.

Similarly, applying the above relation for α = k ∈ {1, . . . , n}, we obtain

0 = ẍk + Γk
βδẋ

βẋδ

= ẍk + Γk
ijẋ

iẋj + Γk
i0ẋ

iẋ0 + Γk
0jẋ

0ẋj + Γk
00ẋ

0ẋ0

= ẍk + Γ̄k
ijẋ

iẋj + 0,

i.e. the curve s →
(
x1(s), . . . , xn(s)

)
satis�es the geodesic equation with respect to the metric ḡ.

Remark. The above proof can be easily generalised to the case of a pseudo-Riemannian manifold
(M, g) which is the product of the pseudo-Riemannian manifolds (M1, g1) and (M2, g2). In that
case, the projections γ1 and γ2 of any geodesic γ of (M, g) onM1 andM2, respectively, are geodesics
for g1 and g2; the proof uses the fact that, in any product coordinate system (x1, . . . , xn1 ; y1, . . . , yn2)
on M (where (x1, . . . , xn1) and (y1, . . . , yn2) are local coordinates on M1 and M2, respectively),
any Christo�el symbol Γδ

αβ with mixed indices (i.e. with indeices belonging to both (x1, . . . , xn1) and
(y1, . . . , yn2)) has to vanish.

5.5 In this exercise, we will prove that there exist compact Lorentzian manifolds which are geodesi-
cally incomplete (recall that, as a consequence of the Hopf�Rinow theorem in Riemannian
geometry, every compact Riemannian manifold is geodesically complete). Consider the mani-
fold M = R

2 \ 0 equipped with the metric

g =
1

u2 + v2
dudv.
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(a) Verify that (M, g) is a smooth Lorentzian manifold and that the map (u, v) → (λ ·u, λ ·v)
is an isometry for every λ ̸= 0.

(b) Consider the group of isometries Γ =
{
(u, v) → (2ku, 2k, v), k ∈ Z

}
. Show that the

quotient space M
/
Γ is a compact manifold. Show also that M

/
Γ inherits a natural

metric g̃ from (M, g) so that the quotient map (M, g) → (M
/
Γ, g̃) is a local isometry.

(c) Show that the map (M, g) → (M
/
Γ, g̃) maps geodesics to geodesics. Compute the

geodesic equation on (M, g) and deduce that (M
/
Γ, g̃) contains a geodesic γ : (a, b) →

M
/
Γ with b < +∞ which cannot be extended beyond t = b.

Solution. (a) It is straightforward to verify that g is a smooth Lorentzian metric on the smooth
manifold M = R

2 \ 0 (in fact, it is conformal to the Minkowski metric on R2 \ 0). For any λ ∈ R \ 0,
we can readily compute that the map Tλ : M → M, de�ned by

Tλ(u, v) = (λu, λv),

is a di�eomorphism satisfying

(Tλ)∗g =
1

(λu)2 + (λv)2
d(λu)d(λv)

=
1

u2 + v2
dudv

= g.

Therefore, Tλ is an isometry of (M, g)

(b) Let's recall �rst a few things about the quotient of a manifold by a subgroup of di�eomor-
phisms: Let G be a subgroup of Di�(N ) for a smooth manifold N . Setting, for any point p ∈ N ,

[p]G
.
=

{
q ∈ N : q = F (p) for some F ∈ G

}
,

then the set
N
/
G

.
= {[p]G : p ∈ N}

(which is called the quotient of N by the action of G), equipped with the quotient topology, has the
structure of a smooth manifold if and only if, for any p ∈ N , there exists an open neighborhood
U ⊂ N of p such that

U ∩ F (U) = ∅ for all F ∈ G (3)

(it is straightforward to verify that, for any p ∈ M, if Φ : V → R
n is a smooth coordinate chart on a

neighborhood V ⊂ U of p, then the collection of coordinate charts

Φ̃ =
{
Φ ◦ F−1 : F ∈ G

}
is a G-invariant set of coordinate charts on neighborhoods of all the points in [p]G and can be used
to construct a coordinate chart around [p]G in N

/
G). With this manifold structure on N

/
G, the
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quotient map π : N → N
/
G, p → [p]G, is a local (but not global) di�eomorphism. Notice that, for

any curve γ : (a, b) → N
/
G, the preimage of γ in N consists of the family of curves

π−1(γ) =
⋃
F∈G

γF ,

satisfying
F1(γF2) = γF1◦F2 , for all F1, F2 ∈ G.

By considering the tangent vectors to such curves, we infer the following statement about T
(
N
/
G
)
:

For any p ∈ N and any tangent vector v ∈ T[p]G

(
N
/
G
)
, there exists a family of tangent vectors

vF ∈ TF (p)N , F ∈ G, such that
π∗(vF ) = v for all F ∈ G

and satisfying
F ∗
1 (vF2) = vF1◦F2 for any F1, F2 ∈ G.

Returning to our case (where N = M and G = Γ), in order to verify that M
/
Γ is a compact

manifold, it su�ces to show that there exists a compact subset K ⊂ M such that the quotient map
π is onto when restricted to K (compactness of M

/
Γ in this case follows from the fact that, since π

is continuous, π(K) is necessarily compact). We can readily verify that

K = {(u, v) ∈ R
2 \ 0 :

1

2
⩽ u2 + v2 ⩽ 2}

has this property (which can be equivalently reexpressed as the statement that, for every p ∈ R2 \ 0,
there exists an F ∈ Γ such that F (p) ∈ K).

We will now use the fact that Γ is in fact a group of isometries to deduce that the quotient
manifold M

/
Γ admits a quotient metric g̃. It is natural to de�ne, for any [p]G ∈ M

/
Γ and any

v, w ∈ T[p]GM
/
Γ,

g̃(v, w)
.
= g(vF , wF ) for all F ∈ Γ (4)

(see the the discussion above for the notation vF , wF ). The above de�nition, of course, makes sense
only when the right hand side of (4) is the same for all F ∈ Γ; this is true precisely when Γ is a
group of isometries of (M, g), since then g(vF , wF ) = g(F ∗v1, F

∗v2) is equal to g(v1, w1) (1 being
the identity element in Γ). Moreover, since π∗(vF ) = v, (4) trivially implies that, in this case, the
quotient map π is a local isometry.

Remark. The above argument works in the case of any group of isometries G acting on a pseudorie-
mannian manifold (N , g) in a way that (3) holds.

(c) In general, if Ψ : (N1, g1) → (N2, g2) is a local isometry, then, for any X, Y ∈ Γ(N1), we

have ∇(N2)
Ψ∗X(Ψ

∗Y ) = ∇(N1)
X Y (where ∇(Ni) denotes the Levi-Civita connection of (Ni, gi); this can be

readily veri�ed using the formula of Kozul for any vector �elds U, V,W :

2gi
(
∇(Ni)

U V,W
)
= U

(
g(V,W )

)
+V

(
g(U,W )

)
−W

(
g(U, V )

)
−g([V,W ], U)−g([U,W ], V )+g([U, V ],W )

(using U = X, V = Y,W = Z ∈ Γ(N1) for i = 1 and U = Ψ∗X, V = Ψ∗Y,W = Ψ∗Z for i = 2).

Thus, if γ : I → N1 is a geodesic of g1, i.e. satis�es ∇(N1)
γ̇ γ̇ = 0, then ∇(N2)

Ψ∗γ̇ (Ψ
∗γ̇) = 0, i.e. Ψ(γ)
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is a geodesic of (N2, g2). Therefore, since, in our case, the quotient map π : M → M
/
Γ is a local

isometry, it maps geodesics to geodesics.
In the (u, v) coordinate system on M, we can readily compute that the Christo�el symbols of

the Levi-Civita connection of g take the following form:

Γu
uu = − 2u

u2 + v2
, Γv

vv = − 2v

u2 + v2
, Γu

uv = Γu
vv = Γv

uv = Γv
uu = 0.

Therefore, the geodesic equation takes the following form: If s → (u(s), v(s)) is a geodesic of (M, g),
then

ü− 2u

u2 + v2
(u̇)2 = 0,

v̈ − 2v

u2 + v2
(v̇)2 = 0.

It can be easily veri�ed that the curve s → (u(s), v(s)) = (1
s
, 0), s ∈ (−∞, 0) is a null geodesic of

(M, g), which is maximally extended (since, as a subset of R2, the limit point of this curve is (0, 0)
as s → 0). The projection of this curve on M

/
Γ is, therefore, a maximally extended geodesic of g̃.
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