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5.1 Let M be a differentiable manifold and V a connection on M.

(a) Show that there exists no (1,2)-type tensor field A on M with the property that, in any
local coordinate system (x!,... 2") on M

k _ 1k

Hint: Check how F,’fj transforms under changes of coordinates.

(b) Show that the torsion 7": T'(M) x I'(M) — I'(M) of the connection V, which is defined
by
T(X,Y) = VxY — VyX — [X,Y],

is a tensor field.

(¢c) Let V be a (possibly) different connection on M. Show that the difference V — V :
(M) x T'(M) — T'(M) is also a tensor field. Deduce that, there exists a (1,2)-type
tensor field A such that, in any given local coordinate system (x!,... z"),

k k Pk
Ay =T = T
where Ffj and ffj are the Christoffel symbols of V and V, respectively.

Solution. (a) Assume that there exists a tensor field A as in the statement. Then, if (z!,..., z")
and (y',... y") are two coordinate systems around the same point p € M, the components Afj and

flfj of A in the two coordinate systems, respectively, are related by the transformation formula

~ oy 0xP 0xP
K B9z Qyt Oy (1)

On the other hand, the Christoffel symbols Ffj and ffj in the coordinate systems (x!,... 2") and
(y',...,y"), respectively, are given by the relations

Ffj B dxk (V aii %)

and

ffj B dyk (V 822' aiy])

oy oz® 0
=5 (Va2 Gy )
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(note that we used the fact that that dz®(-) is a tensor field and, thus, is C°(M)-linear in its
argument). Therefore, we see that the transformation law for the Christoffel symbols contains an

additional term which is not there in (1), namely g%i : %i; . &%. Expressing the coordinates ' = y'(z)
as functions of (z!,..., 2"), this term is equal to
Dyt - (D9 7) - (o (D))
v % or« J
where [DYT]!, = % is the Jacobian matrix for y. In particular, if the second derivatives of the

transformation © — y(z) at p € M are not all 0, then this term will have a non-zero at p. Therefore,
Ffj does not transform under coordinate changes like a tensor field.

(b) In order to show that T is a tensor field, it suffices to show that it is C°°(M)-linear in its
arguments; since T" obviously satisfies T'(X; + X5, Y) = T(X1,Y)+T(X3,Y) (because V and [-, -] are
R-linear in their arguments) and T'(X,Y) = —T(Y, X), it suffices to show that, for any X,Y € I'(M)
and f € C®°(M):

T(fX,Y) = fT(X,Y).

Recall that the Lie bracket [-, ] satisfies for any
X Y] =X Y] -Y(f) - X

since, for any h € C%(M):

[ X Y)(h) = fX(Y(h)-Y (fX(h) = fX(Y(h)-Y(f)X(h)~fY(X(h) = f[X Y](h)-Y(f)X(h).

Using the above observation and the fact that V is C*°(M) in its first argument and satisfies the
Leibniz rule with respect to its second argument, we can calculate:

T(fX,Y)=VixY = Vy(fX) - [fX,Y]
= fVxY =Y (/)X — [VyX — fIX.Y]+Y(f)X
=/ (VixY = Vy(fX) — [X,Y])
=[fT(X,Y).
(¢) As before, we have to verify that V — V is C°°(M)-linear in both its arguments; since, by the

definition of a connection, both V and V are C°°(M)-linear in their first argument and R-linear in
their second argument, it remains to prove that, for any X, Y € I'(M) and f € C*°(M):

(V=V)X,fY)=f(V-V)X)Y).
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Indeed:

(V - v)(XJCY) = VX(fY) - vX(]CY)
=X()Y + fVxY - X(f)Y — fVxY
= fVxY — fVxY
= (V= V)(X.Y).

Therefore, setting A(X,Y) = (V — V)(X,Y) = VxY — VxY, we have shown that A : T'(M) x
(M) — I'(M) is a (1,2)-tensor field; it is easy to verify that, in any local coordinate system

(x',...,2"), the components Afj of A take the form

k _ 1k Tk

5.2 Let U : M™ — R""! be an immersion such that W(M) is a spacelike hypersurface of (R"*1 n)
and let g = U,n be the induced metric. Let (x!,... 2") be a local coordinate chart on
M. Compute the Christoffel symbols Ffj of the Levi-Civita connection associated to g in
the (z!,...,2™) coordinates as functions of ¥ and its derivatives.

Solution. Let (z',...,2") be a local coordinate chart on M. The components g;; of the induced
metric g on this chart takes the form

_ (0 9N L, 0 ., 0 B ove ouh
s = (g 57) = ¥ (G ¥ (53)) = oo G
We can then compute
Gk 02w 9P ove 9>uh

dri P eriars drk 1% 91 Driork
Since we assumed that ¥(M) is spacelike, the induced metric g is Riemannian. In particular, the
matrix [g;;] is invertible; denoting with g the components of the inverse matrix of g;;, we can readily
compute

Ffj = %gkl (@'QU + 0541 — 31%’)
1, (020 Q0P QUe PUP 920 OUF Qe 9PUP
— 29 Tles <8:L”'8xl oxI + ozt OxioxI + 0xioxt Oxt + ox! dxioxd
0*we 9Uh U 92U
92192l fx O a'zcjaxl)
. 00 9?0F
— 9 B g0l Bridw

(where, in passing to the last line above, we used the fact that 7,4 is symmetric in «, 5 to write
22y 9uf __ o> 92wl )
NoB 5riozt ot — NoB a7 daioxt )
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Remark. An alternative way to view the above formula is as follows: Since W(M) is a spacelike
hypersurface of (R"*!, 1) of dimension n, for any p € M the tangent space Ty, V(M) (which is
simply the image of d¥ : T,M — Ty,)R"™) is a spacelike hyperplane of Ty(,)R"*! of codimension
1. Let us denote with H; s Ty R — T, M the composition of the orthogonal projection (with
respect to 1) Ty R — Ty, V(M) with the linear isomorphism (d¥)~! : Ty, U(M) — T,M.
Then, it is easy to verify that the map H; expressed with respect the Cartesian frame {e,}?_, on

Ty(R™™* and the {2;}"  frame on T,M takes the form

(2

B oOwh
(T,)E = ", Nag - 7 P)

(you should be able to verify this by noting that H;)r maps V,(0;) = %ea to 0; and any vector
n-orthogonal to Ty, ¥ (M) = span{\ll*(ﬁi)}?zl is mapped to 0). Then, the above expression for the

Christoffel symbols of g can be reexpressed as

, 0%0P
BOzriori”

k _ T
I = (1)

Note that, since V,(0;) = %‘I: €q, the term a‘ﬁgjj is simply the a-th component of ng(a_)llf*(aj),

where V(" is the flat connection on R***. Thus, the induced connection on M via U is just the
orthogonal projection onto W(M) of the flat connection on R™"!.

5.3 Let M be a smooth manifold equipped with a connection V. We can extend the connection V
to a map V : T'(M) x Tenf(M) — Tenf(M) by the requirements that

— V satisfies the Leibniz rule with respect to tensor products, i.e. for all X € I'(M)
Vx(f®g)=Vxf©g+[®Vxyg,
— V commutes with contractions, i.e.
Vx(trd) = tr(VxA).

Show that, in any local coordinate chart (x!,... "), if Ffj are the Christoffel symbols of V
then, for every 1-form w:

oz
Moreover, for any (k,[)-tensor field T

i1...0_10

i1...0k _ 21...0k i1 rbia.. ik ik
(va%aT) Jegi 0uT jl---jl+rabT gy Tt Lol G101
_ b bia...ik o . b i1...05_1b
A A S
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Solution. We will start by observing that, for any 1-form w and any vector field X on M, the
function w(X) € C*°(M) can be seen as the contraction tr(w ® X) of the (1,1)-tensor field w ® X;
this can be seen clearly in local coordinates, since

(W®X)! =wX’ and w(X) = wp X"

Therefore, using our assumptions that Vx(f ® h) = Vxf ® h+ f ® Vxh and V commutes with
contractions, we obtain for any X,Y € I'(M):

Y (w(X)) = Y (tr(w ® X))
= tr(Vy(w ® X))
:tr(Vyw®X+w®VyX)
= Vyw(X) + w(VyX).

By rearranging the terms in the above identity, we thus obtain:

Vyw(X) = Y (w0(X)) - w(VyX),

In any given local coordinate system (z',... 2") on M, if we apply the above formula for X = %
and Y = % we obtain:

In particular, if w = d2* is a coordinate 1-form, then

Vo, (da*) = —Tldx’.

If T is a tensor field of type (k, 1), then it can be expressed in a local coordinate system (z?, ..., z")
as before as a linear combination of the coordinate (k, [)-tensor fields %@- S ® ag?% Rdr" ®- - -@dz¥,
71,...,7k,51,...75l S {1,...777,}1

T =T i@...@ QRdz" ® - @ dx” (2)
8101 G Ere '

Our assumption on the behaviour of V on tensor products and the fact that V satisfies the Leibniz
rule implies that, for any f € C*°(M), any X € I'(M) and any (Y1),..., Yy, way, .-, wp) €
(M) x - - xT (M) x ' (M) x -+« x (M), we have

Vx(fYn ® @Y @wy @ @wy) = X(/)Y) @ @Y @wy ® - @uw
+f(VxY1) ® - @Yy Q) ® - - @ w
+. .+ Yy ®- @ (VY Quway ® - ®w)
+fYy® - @Yy ®Vx(way) ® - @uw
+. Y@ @Y @way @ @ (Vxw).
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Therefore, applying this formula for the V_»_ derivative of the expression (2) and using the fact that

Sz ™
0 .0
V — F] AP
O D ¥ O
(the last formula following from our computation of the expression of V acting on 1-forms), we
obtain:

Vo, (da') = =T da?

0

Vo' = (0aT", ) 5 @ ® 5 - @ dr” @ -+ @ da®
+ T'Yl---'Yk(slmél g%% R ® g ®Rdr’ @ - ® dx®
b T FQW% ® - ® a%ﬁ ®dx™ ® - @ dz’
_ T%'%&...él ilﬂ 8571 ®-® oy Rd? @ - ® dz’
— =TT S Zﬁ% R ® e QA" ® - ® dz’.

Therefore, considering the 8%1 ® - ® 83k ® dr’t @ --- @ do’' component of the above expression

(noticing that, in each summand involving T', an index of T is contracted with one index of T', and
we are free to rename those indices as we please), we obtain

i1..ip_1b

i1emin o i1, i1 rbio...ix i
(Vo T)t ey = 0aT ", AT+ + T T 50
. b 11%2...1% . o b 210k
Ftlle bja...J1 te Fale Jie-Ji—1b°

5.4 Let (M, g) be a Riemannian manifold (i.e. g is positive definite) and let us define the Lorentzian
manifold (M, g) so that M = Rx M and g is the product metric g = —(dt)?+g; this means that,
for every local coordinate chart (z',...,2") on U C M, if we extend it to a local coordinate
chart (t,2',...,2™) on R x U C M so that t is simply the projection on the R factor, then

—dt® + gijda'da’.

g —=
Show that a curve v : (0,1) — (M, g) is a geodesic (for the Levi-Civita connection of g) if and
only, in any local coordinate system (¢;x!,... z") as above, if it can be written in the form

¥(s) = (t(s):7'(s))
where £(s) = A5 + A for some A\, \g € R and 7 : (0,1) — M is a geodesic of (M, g).

Solution. For any p € M, let (2%, 2',... 2") = (t,z',...,2") be a local coordinate system around
p which is as described in the statement of the exercise. We will adopt the following convention: We
will use Greek letters (i.e. a, 3,7, ...) for indices ranging from 0 to n and Latin letters (i.e. 7, j, k, .. .)
for indices ranging from 1 to n. With this notation, the components g,z of g take the form

goo =—1, g0i=0, gij = Gij-
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Therefore, we can also calculate that the components g*? of the inverse matrix of [g] take the form
g =-1, ¢"=0, ¢7=g"

(where g are the components of the inverse matrix of [g;;]).
Let us, now turn to calculating the Christoffel symbols Fgﬁ of g. Using the formula

1
I, = §9M (0agrs + 039ra — OrGas),
we can readily verify that
Fgﬂ =0 when at least one of a;, 3,6 is 0
and
k _ Tk ..
Iy =15 wheni j ke {l,... ,n},

where ffj are the Christoffel symbols of g.

Let v:(0,1) = M, v(s) = (2°(s), z'(s),...,2"(s)) be a geodesic of g. Thus, the components of

v satisfy the geodesic ODE
i+ Tga”i° = 0.

Applying the above relation for a« = 0 and using the fact that (as we calculated) ng = 0, we obtain
i%(s) = 0= 2%(s) = \is + Ay for some Ao, A\; € R.
Similarly, applying the above relation for « = k € {1,...,n}, we obtain
0 = i* + [;a’a
=i 4+ DEa'a? + Tha'a” + If,a% + Thoa’a”
= i* + Thi'i’ +0,
Le. the curve s = (z'(s),...,a"(s)) satisfies the geodesic equation with respect to the metric g.

Remark. The above proof can be easily generalised to the case of a pseudo-Riemannian manifold
(M, g) which is the product of the pseudo-Riemannian manifolds (M, g1) and (Ma, g2). In that
case, the projections v, and ~, of any geodesic v of (M, g) on M; and M, respectively, are geodesics
for g; and gy; the proof uses the fact that, in any product coordinate system (x!,... 2™yt ... y™)
on M (where (z',...,2™) and (y',...,y"™) are local coordinates on M; and M, respectively),
any Christoffel symbol Fiﬁ with mized indices (i.e. with indeices belonging to both (z!,..., x™) and
(y',...,y™)) has to vanish.

5.5 In this exercise, we will prove that there exist compact Lorentzian manifolds which are geodesi-
cally incomplete (recall that, as a consequence of the Hopf-Rinow theorem in Riemannian
geometry, every compact Riemannian manifold is geodesically complete). Consider the mani-
fold M = R?\ 0 equipped with the metric

dudv.

g:uQ—I—v2
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(a) Verify that (M, g) is a smooth Lorentzian manifold and that the map (u,v) — (A-u, A-v)
is an isometry for every A # 0.

(b) Consider the group of isometries I' = {(u,v) — (2%u,2% v), k € Z}. Show that the
quotient space M / [' is a compact manifold. Show also that M / I' inherits a natural
metric § from (M, g) so that the quotient map (M, g) — (M/I, ) is a local isometry.

(¢) Show that the map (M,g) — (M/T,g) maps geodesics to geodesics. Compute the
geodesic equation on (M, g) and deduce that (M /T, ) contains a geodesic v : (a,b) —
M/F with b < 400 which cannot be extended beyond ¢ = b.

Solution. (a) It is straightforward to verify that g is a smooth Lorentzian metric on the smooth
manifold M = R?\ 0 (in fact, it is conformal to the Minkowski metric on R?\ 0). For any A € R\ 0,
we can readily compute that the map Ty : M — M, defined by

Ty(u,v) = (Au, \v),

is a diffeomorphism satisfying
1
(Au)? + (Av)?

1
= mdUdU

(Th):+9 = d(Au)d(iv)

Therefore, T) is an isometry of (M, g)

(b) Let’s recall first a few things about the quotient of a manifold by a subgroup of diffeomor-
phisms: Let G be a subgroup of Diff(N') for a smooth manifold /. Setting, for any point p € N,

[ple = {q € N : ¢ = F(p)for some F € G},

then the set
N/G={lplc: pe N}

(which is called the quotient of N by the action of G), equipped with the quotient topology, has the
structure of a smooth manifold if and only if, for any p € N, there exists an open neighborhood
U C N of p such that

UNFU)=0 forall Fed (3)

(it is straightforward to verify that, for any p € M, if ® : YV — R" is a smooth coordinate chart on a
neighborhood V C U of p, then the collection of coordinate charts

é:{CIDOF_lz FGG}

is a G-invariant set of coordinate charts on neighborhoods of all the points in [p]g and can be used
to construct a coordinate chart around [p]g in N / (). With this manifold structure on A / G, the
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quotient map 7 : N = N / G, p — [plg, is a local (but not global) diffecomorphism. Notice that, for
any curve v : (a,b) — N/G, the preimage of v in N consists of the family of curves

T H(y) = U v,

FreG

satisfying
Fl(VFZ) = YFi0Fs, for all FlaFQ eqG.

By considering the tangent vectors to such curves, we infer the following statement about T(./\/ / G’):
For any p € AN and any tangent vector v € Tj,, (N / G), there exists a family of tangent vectors
VR € TF(p)N, F € G, such that

™ (vp)=v forall FeG

and satisfying
FY(vp,) = vpop, forany Fi, F, € G.

Returning to our case (where N' = M and G = T'), in order to verify that M/F is a compact
manifold, it suffices to show that there exists a compact subset K C M such that the quotient map
7 is onto when restricted to K (compactness of M / [' in this case follows from the fact that, since 7
is continuous, m(K) is necessarily compact). We can readily verify that

K = {(u,v) € R2\ 0 %<u2+v2<2}
has this property (which can be equivalently reexpressed as the statement that, for every p € R?\ 0,
there exists an F' € I' such that F(p) € K).

We will now use the fact that I' is in fact a group of isometries to deduce that the quotient
manifold M /T" admits a quotient metric §. It is natural to define, for any [p]l¢ € M /T and any
Vv, W € T[p]GM/F,

g(v,w) = g(vp,wp) forall F el (4)

(see the the discussion above for the notation vg, wr). The above definition, of course, makes sense
only when the right hand side of (4) is the same for all F' € I'; this is true precisely when I is a
group of isometries of (M, g), since then g(vp,wr) = g(F*vy, F*vy) is equal to g(vy,wy) (1 being
the identity element in T'). Moreover, since 7*(vr) = v, (4) trivially implies that, in this case, the
quotient map 7 is a local isometry.

Remark. The above argument works in the case of any group of isometries G' acting on a pseudorie-
mannian manifold (N, ¢) in a way that (3) holds.

(¢) In general, if ¥ : (N7,g91) — (N2, g2) is a local isometry, then, for any X,Y € T'(N;), we
have Vg\[z)g(\II*Y) = Vg?fl)Y (where VOV9) denotes the Levi-Civita connection of (A;, g;); this can be
readily verified using the formula of Kozul for any vector fields U, V, W:

26:(VEIV, W) = U (g(V, W) +V (9(U, W) =W (g(U, V) =g([V, W], U)=g([U, W], V) +¢([U, V], W)

(using U = X, V=Y W=Z¢cTl(N) fori=1and U =¥*XV = VYW = V*Z for i = 2).

Thus, if v : I — N is a geodesic of gy, i.e. satisfies VgNl)V = 0, then Vg\f.y)(\lf*v) =0, i.e. U(y)
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is a geodesic of (N3, g2). Therefore, since, in our case, the quotient map 7 : M — M/F is a local
isometry, it maps geodesics to geodesics.

In the (u,v) coordinate system on M, we can readily compute that the Christoffel symbols of
the Levi-Civita connection of g take the following form:

2u 2v
M, = I =—— M =TY =TY =TY, =0
e u2 + 02 VU u2 + 02 uv Vv uv uu
Therefore, the geodesic equation takes the following form: If s — (u(s),v(s)) is a geodesic of (M, g),
then

2u .,
by =0
. 20 .,
b ) =0

It can be casily verified that the curve s — (u(s),v(s)) = (,0), s € (—00,0) is a null geodesic of
(M, g), which is maximally extended (since, as a subset of R?, the limit point of this curve is (0,0)
as s — 0). The projection of this curve on M/F is, therefore, a maximally extended geodesic of g.
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