G. Moschidis9 Oct. 2024

- **5.1** Let \mathcal{M} be a differentiable manifold and ∇ a connection on \mathcal{M} .
 - (a) Show that there exists no (1,2)-type tensor field A on \mathcal{M} with the property that, in any local coordinate system (x^1,\ldots,x^n) on \mathcal{M}

$$A_{ij}^k = \Gamma_{ij}^k$$
.

Hint: Check how Γ_{ij}^k transforms under changes of coordinates.

(b) Show that the torsion $T: \Gamma(\mathcal{M}) \times \Gamma(\mathcal{M}) \to \Gamma(\mathcal{M})$ of the connection ∇ , which is defined by

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y],$$

is a tensor field.

(c) Let ∇ be a (possibly) different connection on \mathcal{M} . Show that the difference $\nabla - \nabla$: $\Gamma(\mathcal{M}) \times \Gamma(\mathcal{M}) \to \Gamma(\mathcal{M})$ is also a tensor field. Deduce that, there exists a (1,2)-type tensor field A such that, in any given local coordinate system (x^1, \ldots, x^n) ,

$$A_{ij}^k = \Gamma_{ij}^k - \bar{\Gamma}_{ij}^k$$

where Γ_{ij}^k and $\bar{\Gamma}_{ij}^k$ are the Christoffel symbols of ∇ and $\bar{\nabla}$, respectively.

Solution. (a) Assume that there exists a tensor field A as in the statement. Then, if (x^1, \ldots, x^n) and (y^1, \ldots, y^n) are two coordinate systems around the same point $p \in \mathcal{M}$, the components A_{ij}^k and \tilde{A}_{ij}^k of A in the two coordinate systems, respectively, are related by the transformation formula

$$\tilde{A}_{ij}^{k} = A_{\alpha\beta}^{\gamma} \cdot \frac{\partial y^{k}}{\partial x^{\alpha}} \frac{\partial x^{\beta}}{\partial y^{i}} \frac{\partial x^{\beta}}{\partial y^{j}}.$$
 (1)

On the other hand, the Christoffel symbols Γ_{ij}^k and $\tilde{\Gamma}_{ij}^k$ in the coordinate systems (x^1, \ldots, x^n) and (y^1, \ldots, y^n) , respectively, are given by the relations

$$\Gamma_{ij}^k = dx^k \left(\nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j} \right)$$

and

$$\begin{split} \tilde{\Gamma}_{ij}^{k} &= dy^{k} \left(\nabla_{\frac{\partial}{\partial y^{i}}} \frac{\partial}{\partial y^{j}} \right) \\ &= \frac{\partial y^{k}}{\partial x^{\gamma}} dx^{\gamma} \left(\nabla_{\frac{\partial x^{\alpha}}{\partial y^{i}} \cdot \frac{\partial}{\partial x^{\alpha}}} \left(\frac{\partial x^{\beta}}{\partial y^{j}} \cdot \frac{\partial}{\partial x^{\beta}} \right) \right. \\ &= \frac{\partial y^{k}}{\partial x^{\gamma}} \cdot \frac{\partial x^{\alpha}}{\partial y^{i}} \cdot dx^{\gamma} \left(\nabla_{\frac{\partial}{\partial x^{\alpha}}} \left(\frac{\partial x^{\beta}}{\partial y^{j}} \cdot \frac{\partial}{\partial x^{\beta}} \right) \right. \\ &= \frac{\partial y^{k}}{\partial x^{\gamma}} \cdot \frac{\partial x^{\alpha}}{\partial y^{i}} \cdot dx^{\gamma} \left(\frac{\partial}{\partial x^{\alpha}} \left(\frac{\partial x^{\beta}}{\partial y^{j}} \right) \cdot \frac{\partial}{\partial x^{\beta}} + \frac{\partial x^{\beta}}{\partial y^{j}} \cdot \nabla_{\frac{\partial}{\partial x^{\alpha}}} \left(\frac{\partial}{\partial x^{\beta}} \right) \right. \end{split}$$

G. Moschidis 9 Oct. 2024

$$\begin{split} &= \frac{\partial y^k}{\partial x^{\gamma}} \cdot \frac{\partial x^{\alpha}}{\partial y^i} \cdot \left(\frac{\partial}{\partial x^{\alpha}} \left(\frac{\partial x^{\beta}}{\partial y^j} \right) \cdot dx^{\gamma} \left(\frac{\partial}{\partial x^{\beta}} \right) + \frac{\partial x^{\beta}}{\partial y^j} \cdot dx^{\gamma} \left(\nabla_{\frac{\partial}{\partial x^{\alpha}}} \left(\frac{\partial}{\partial x^{\beta}} \right) \right) \\ &= \frac{\partial y^k}{\partial x^{\gamma}} \cdot \frac{\partial x^{\alpha}}{\partial y^i} \cdot \frac{\partial}{\partial x^{\alpha}} \left(\frac{\partial x^{\gamma}}{\partial y^j} \right) + \Gamma_{\alpha\beta}^{\gamma} \cdot \frac{\partial y^k}{\partial x^{\gamma}} \cdot \frac{\partial x^{\alpha}}{\partial y^i} \cdot \frac{\partial x^{\beta}}{\partial y^j} \end{split}$$

(note that we used the fact that that $dx^k(\cdot)$ is a tensor field and, thus, is $C^{\infty}(\mathcal{M})$ -linear in its argument). Therefore, we see that the transformation law for the Christoffel symbols contains an additional term which is not there in (1), namely $\frac{\partial y^k}{\partial x^{\gamma}} \cdot \frac{\partial x^{\alpha}}{\partial y^i} \cdot \frac{\partial}{\partial x^{\alpha}}$. Expressing the coordinates $y^i = y^i(x)$ as functions of (x^1, \ldots, x^n) , this term is equal to

$$[Dy]_{\gamma}^{k} \cdot ([Dy]^{-1})_{i}^{\alpha} \cdot \left(\frac{\partial}{\partial x^{\alpha}}([Dy]^{-1})_{j}^{\beta}\right)$$

where $[DY]^i_{\alpha} = \frac{\partial y^i}{\partial x^{\alpha}}$ is the Jacobian matrix for y. In particular, if the second derivatives of the transformation $x \to y(x)$ at $p \in \mathcal{M}$ are not all 0, then this term will have a non-zero at p. Therefore, Γ^k_{ij} does not transform under coordinate changes like a tensor field.

(b) In order to show that T is a tensor field, it suffices to show that it is $C^{\infty}(\mathcal{M})$ -linear in its arguments; since T obviously satisfies $T(X_1+X_2,Y)=T(X_1,Y)+T(X_2,Y)$ (because ∇ and $[\cdot,\cdot]$ are \mathbb{R} -linear in their arguments) and T(X,Y)=-T(Y,X), it suffices to show that, for any $X,Y\in\Gamma(\mathcal{M})$ and $f\in C^{\infty}(\mathcal{M})$:

$$T(f X, Y) = f T(X, Y).$$

Recall that the Lie bracket $[\cdot, \cdot]$ satisfies for any

$$[f X, Y] = f[X, Y] - Y(f) \cdot X$$

since, for any $h \in C^{\infty}(\mathcal{M})$:

$$[fX,Y](h)=fX\big(Y(h)\big)-Y\big(fX(h)\big)=fX\big(Y(h)\big)-Y(f)X(h)-fY\big(X(h)\big)=f[X,Y](h)-Y(f)X(h).$$

Using the above observation and the fact that ∇ is $C^{\infty}(\mathcal{M})$ in its first argument and satisfies the Leibniz rule with respect to its second argument, we can calculate:

$$T(fX,Y) = \nabla_{fX}Y - \nabla_{Y}(fX) - [fX,Y]$$

$$= f\nabla_{X}Y - Y(f)X - f\nabla_{Y}X - f[X,Y] + Y(f)X$$

$$= f \cdot (\nabla_{fX}Y - \nabla_{Y}(fX) - [X,Y])$$

$$= fT(X,Y).$$

(c) As before, we have to verify that $\nabla - \bar{\nabla}$ is $C^{\infty}(\mathcal{M})$ -linear in both its arguments; since, by the definition of a connection, both ∇ and $\bar{\nabla}$ are $C^{\infty}(\mathcal{M})$ -linear in their first argument and \mathbb{R} -linear in their second argument, it remains to prove that, for any $X, Y \in \Gamma(\mathcal{M})$ and $f \in C^{\infty}(\mathcal{M})$:

$$(\nabla - \bar{\nabla})(X, f Y) = f (\nabla - \bar{\nabla})(X, Y).$$

G. Moschidis9 Oct. 2024

Indeed:

$$\begin{split} (\nabla - \bar{\nabla})(X, f \, Y) &= \nabla_X(f \, Y) - \bar{\nabla}_X(f \, Y) \\ &= X(f)Y + f \, \nabla_X Y - X(f)Y - f \, \bar{\nabla}_X Y \\ &= f \, \nabla_X Y - f \, \bar{\nabla}_X Y \\ &= f \, (\nabla - \bar{\nabla})(X, Y). \end{split}$$

Therefore, setting $A(X,Y) \doteq (\nabla - \bar{\nabla})(X,Y) = \nabla_X Y - \bar{\nabla}_X Y$, we have shown that $A : \Gamma(\mathcal{M}) \times \Gamma(\mathcal{M}) \to \Gamma(\mathcal{M})$ is a (1,2)-tensor field; it is easy to verify that, in any local coordinate system (x^1,\ldots,x^n) , the components A_{ij}^k of A take the form

$$A_{ij}^k = \Gamma_{ij}^k - \bar{\Gamma}_{ij}^k.$$

5.2 Let $\Psi: \mathcal{M}^n \to \mathbb{R}^{n+1}$ be an immersion such that $\Psi(\mathcal{M})$ is a *spacelike* hypersurface of (\mathbb{R}^{n+1}, η) and let $\bar{g} = \Psi_* \eta$ be the induced metric. Let (x^1, \ldots, x^n) be a local coordinate chart on \mathcal{M} . Compute the Christoffel symbols Γ^k_{ij} of the Levi-Civita connection associated to \bar{g} in the (x^1, \ldots, x^n) coordinates as functions of Ψ and its derivatives.

Solution. Let (x^1, \ldots, x^n) be a local coordinate chart on \mathcal{M} . The components \bar{g}_{ij} of the induced metric \bar{g} on this chart takes the form

$$\bar{g}_{ij} = \bar{g}\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right) = \eta\left(\Psi^*\left(\frac{\partial}{\partial x^i}\right), \Psi^*\left(\frac{\partial}{\partial x^j}\right)\right) = \eta_{\alpha\beta} \frac{\partial \Psi^{\alpha}}{\partial x^i} \frac{\partial \Psi^{\beta}}{\partial x^j}.$$

We can then compute

$$\frac{\partial \bar{g}_{jk}}{\partial x^i} = \eta_{\alpha\beta} \frac{\partial^2 \Psi^{\alpha}}{\partial x^i \partial x^j} \frac{\partial \Psi^{\beta}}{\partial x^k} + \eta_{\alpha\beta} \frac{\partial \Psi^{\alpha}}{\partial x^j} \frac{\partial^2 \Psi^{\beta}}{\partial x^i \partial x^k}.$$

Since we assumed that $\Psi(\mathcal{M})$ is spacelike, the induced metric \bar{g} is *Riemannian*. In particular, the matrix $[\bar{g}_{ij}]$ is invertible; denoting with \bar{g}^{ij} the components of the inverse matrix of \bar{g}_{ij} , we can readily compute

$$\Gamma_{ij}^{k} = \frac{1}{2} \bar{g}^{kl} \left(\partial_{i} \bar{g}_{lj} + \partial_{j} \bar{g}_{li} - \partial_{l} \bar{g}_{ij} \right)
= \frac{1}{2} \bar{g}^{kl} \eta_{\alpha\beta} \left(\frac{\partial^{2} \Psi^{\alpha}}{\partial x^{i} \partial x^{l}} \frac{\partial \Psi^{\beta}}{\partial x^{j}} + \frac{\partial \Psi^{\alpha}}{\partial x^{l}} \frac{\partial^{2} \Psi^{\beta}}{\partial x^{i} \partial x^{j}} + \frac{\partial^{2} \Psi^{\alpha}}{\partial x^{j} \partial x^{l}} \frac{\partial \Psi^{\beta}}{\partial x^{i}} + \frac{\partial^{2} \Psi^{\alpha}}{\partial x^{l}} \frac{\partial^{2} \Psi^{\beta}}{\partial x^{i}} - \frac{\partial^{2} \Psi^{\alpha}}{\partial x^{i} \partial x^{l}} \frac{\partial^{2} \Psi^{\beta}}{\partial x^{j} \partial x^{l}} \right)
= \bar{g}^{kl} \eta_{\alpha\beta} \frac{\partial \Psi^{\alpha}}{\partial x^{l}} \frac{\partial^{2} \Psi^{\beta}}{\partial x^{i} \partial x^{j}}$$

(where, in passing to the last line above, we used the fact that $\eta_{\alpha\beta}$ is symmetric in α, β to write $\eta_{\alpha\beta} \frac{\partial^2 \Psi^{\alpha}}{\partial x^j \partial x^l} \frac{\partial \Psi^{\beta}}{\partial x^i} = \eta_{\alpha\beta} \frac{\partial \Psi^{\alpha}}{\partial x^i} \frac{\partial^2 \Psi^{\beta}}{\partial x^j \partial x^l}$).

G. Moschidis 9 Oct. 2024

Remark. An alternative way to view the above formula is as follows: Since $\Psi(\mathcal{M})$ is a spacelike hypersurface of (\mathbb{R}^{n+1}, η) of dimension n, for any $p \in \mathcal{M}$ the tangent space $T_{\Psi(p)}\Psi(\mathcal{M})$ (which is simply the image of $d\Psi: T_p\mathcal{M} \to T_{\Psi(p)}\mathbb{R}^{n+1}$) is a spacelike hyperplane of $T_{\Psi(p)}\mathbb{R}^{n+1}$ of codimension 1. Let us denote with $\Pi_p^{\top}: T_{\Psi(p)}\mathbb{R}^{n+1} \to T_p\mathcal{M}$ the composition of the orthogonal projection (with respect to η) $T_{\Psi(p)}\mathbb{R}^{n+1} \to T_{\Psi(p)}\Psi(\mathcal{M})$ with the linear isomorphism $(d\Psi)^{-1}: T_{\Psi(p)}\Psi(\mathcal{M}) \to T_p\mathcal{M}$. Then, it is easy to verify that the map Π_p^{\top} expressed with respect the Cartesian frame $\{e_{\alpha}\}_{\alpha=0}^n$ on $T_{\Psi(p)}\mathbb{R}^{n+1}$ and the $\{\frac{\partial}{\partial x^i}\}_{i=1}^n$ frame on $T_p\mathcal{M}$ takes the form

$$(\Pi_p^{\top})_{\alpha}^k = \bar{g}^{kl}|_p \cdot \eta_{\alpha\beta} \cdot \frac{\partial \Psi^{\beta}}{\partial x^l}(p)$$

(you should be able to verify this by noting that Π_p^{\top} maps $\Psi_*(\partial_i) = \frac{\partial \Psi^{\alpha}}{\partial x^i} e_{\alpha}$ to ∂_i and any vector η -orthogonal to $T_{\Psi(p)}\Psi(\mathcal{M}) = \operatorname{span}\{\Psi^*(\partial_i)\}_{i=1}^n$ is mapped to 0). Then, the above expression for the Christoffel symbols of \bar{g} can be reexpressed as

$$\Gamma_{ij}^k = (\Pi^\top)_\beta^k \frac{\partial^2 \Psi^\beta}{\partial x^i \partial x^j}.$$

Note that, since $\Psi_*(\partial_i) = \frac{\partial \Psi^{\alpha}}{\partial x^i} e_{\alpha}$, the term $\frac{\partial^2 \Psi^{\beta}}{\partial x^i \partial x^j}$ is simply the α -th component of $\nabla^{(\eta)}_{\Psi_*(\partial_i)} \Psi_*(\partial_j)$, where $\nabla^{(\eta)}$ is the flat connection on \mathbb{R}^{n+1} . Thus, the induced connection on \mathcal{M} via Ψ is just the orthogonal projection onto $\Psi(\mathcal{M})$ of the flat connection on \mathbb{R}^{n+1} .

- **5.3** Let \mathcal{M} be a smooth manifold equipped with a connection ∇ . We can extend the connection ∇ to a map $\nabla : \Gamma(M) \times Ten_I^k(\mathcal{M}) \to Ten_I^k(\mathcal{M})$ by the requirements that
 - $-\nabla$ satisfies the Leibniz rule with respect to tensor products, i.e. for all $X \in \Gamma(M)$

$$\nabla_X (f \otimes g) = \nabla_X f \otimes g + f \otimes \nabla_X g,$$

 $-\nabla$ commutes with contractions, i.e.

$$\nabla_X(\operatorname{tr} A) = \operatorname{tr}(\nabla_X A).$$

Show that, in any local coordinate chart (x^1, \ldots, x^n) , if Γ_{ij}^k are the Christoffel symbols of ∇ then, for every 1-form ω :

$$(\nabla_{\frac{\partial}{\partial x^i}}\omega)_j = \partial_i\omega_j - \Gamma_{ij}^k\omega_k.$$

Moreover, for any (k, l)-tensor field T:

$$(\nabla_{\frac{\partial}{\partial x^{a}}}T)^{i_{1}\dots i_{k}}{}_{j_{1}\dots j_{l}} = \partial_{a}T^{i_{1}\dots i_{k}}{}_{j_{1}\dots j_{l}} + \Gamma^{i_{1}}_{ab}T^{bi_{2}\dots i_{k}}{}_{j_{1}\dots j_{l}} + \dots + \Gamma^{i_{k}}_{ab}T^{i_{1}\dots i_{k-1}b}{}_{j_{1}\dots j_{l}} - \Gamma^{b}_{aj_{1}\dots j_{l-1}b}$$
$$- \Gamma^{b}_{aj_{1}}T^{bi_{2}\dots i_{k}}{}_{bj_{2}\dots j_{l}} - \dots - \Gamma^{b}_{aj_{l}}T^{i_{1}\dots i_{k-1}b}{}_{j_{1}\dots j_{l-1}b}.$$

G. Moschidis9 Oct. 2024

Solution. We will start by observing that, for any 1-form ω and any vector field X on \mathcal{M} , the function $\omega(X) \in C^{\infty}(\mathcal{M})$ can be seen as the contraction $\operatorname{tr}(\omega \otimes X)$ of the (1,1)-tensor field $\omega \otimes X$; this can be seen clearly in local coordinates, since

$$(\omega \otimes X)_j^i \doteq \omega_i X^j$$
 and $\omega(X) = \omega_k X^k$.

Therefore, using our assumptions that $\nabla_X(f \otimes h) = \nabla_X f \otimes h + f \otimes \nabla_X h$ and ∇ commutes with contractions, we obtain for any $X, Y \in \Gamma(\mathcal{M})$:

$$Y(\omega(X)) = Y(\operatorname{tr}(\omega \otimes X))$$

$$= \operatorname{tr}(\nabla_Y(\omega \otimes X))$$

$$= \operatorname{tr}(\nabla_Y \omega \otimes X + \omega \otimes \nabla_Y X)$$

$$= \nabla_Y \omega(X) + \omega(\nabla_Y X).$$

By rearranging the terms in the above identity, we thus obtain:

$$\nabla_Y \omega(X) = Y(\omega(X)) - \omega(\nabla_Y X).$$

In any given local coordinate system (x^1, \ldots, x^n) on \mathcal{M} , if we apply the above formula for $X = \frac{\partial}{\partial x^j}$ and $Y = \frac{\partial}{\partial x^i}$ we obtain:

$$\left(\nabla_{\frac{\partial}{\partial x^i}}\omega\right)_j = \partial_i(\omega_j) - \left(\nabla_{\partial_i}\partial_j\right)^k \omega_k$$
$$= \partial_i(\omega_j) - \Gamma_{ij}^k \omega_k.$$

In particular, if $\omega = dx^k$ is a coordinate 1-form, then

$$\nabla_{\partial_i}(dx^k) = -\Gamma^k_{ij}dx^j.$$

If T is a tensor field of type (k, l), then it can be expressed in a local coordinate system (x^1, \ldots, x^n) as before as a linear combination of the coordinate (k, l)-tensor fields $\frac{\partial}{\partial x^{\gamma_1}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{\delta_1} \otimes \cdots \otimes dx^{\delta_l}$, $\gamma_1, \ldots, \gamma_k, \delta_1, \ldots, \delta_l \in \{1, \ldots, n\}$:

$$T = T^{\gamma_1 \dots \gamma_k} \underset{\delta_1 \dots \delta_l}{\partial} \frac{\partial}{\partial x^{\gamma_1}} \otimes \dots \otimes \frac{\partial}{\partial x^{\gamma_k}} \otimes dx^{\delta_1} \otimes \dots \otimes dx^{\delta_l}. \tag{2}$$

Our assumption on the behaviour of ∇ on tensor products and the fact that ∇ satisfies the Leibniz rule implies that, for any $f \in C^{\infty}(\mathcal{M})$, any $X \in \Gamma(\mathcal{M})$ and any $(Y_{(1)}, \ldots, Y_{(1)}, \omega_{(1)}, \ldots, \omega_{(l)}) \in \Gamma(\mathcal{M}) \times \cdots \times \Gamma(\mathcal{M}) \times \Gamma^*(\mathcal{M}) \times \cdots \times \Gamma^*(\mathcal{M})$, we have

$$\nabla_{X} (f Y_{(1)} \otimes \cdots \otimes Y_{(k)} \otimes \omega_{(1)} \otimes \cdots \otimes \omega_{(l)}) = X(f) Y_{(1)} \otimes \cdots \otimes Y_{(k)} \otimes \omega_{(1)} \otimes \cdots \otimes \omega_{(l)}$$

$$+ f (\nabla_{X} Y_{(1)}) \otimes \cdots \otimes Y_{(k)} \otimes \omega_{(1)} \otimes \cdots \otimes \omega_{(l)}$$

$$+ \ldots + f Y_{(1)} \otimes \cdots \otimes Y_{(k)} \otimes \nabla_{X} (\omega_{(1)}) \otimes \cdots \otimes \omega_{(l)}$$

$$+ f Y_{(1)} \otimes \cdots \otimes Y_{(k)} \otimes \nabla_{X} (\omega_{(1)}) \otimes \cdots \otimes \omega_{(l)}$$

$$+ \ldots + f Y_{(1)} \otimes \cdots \otimes Y_{(k)} \otimes \omega_{(1)} \otimes \cdots \otimes (\nabla_{X} \omega_{(l)}).$$

Therefore, applying this formula for the $\nabla_{\frac{\partial}{\partial -\Omega}}$ derivative of the expression (2) and using the fact that

$$\nabla_{\partial_{\alpha}} \frac{\partial}{\partial x^{i}} = \Gamma^{j}_{\alpha i} \frac{\partial}{\partial x^{j}}, \quad \nabla_{\partial_{\alpha}} (dx^{i}) = -\Gamma^{i}_{\alpha j} dx^{j}$$

(the last formula following from our computation of the expression of ∇ acting on 1-forms), we obtain:

$$\nabla_{\partial_{\alpha}}T = (\partial_{\alpha}T^{\gamma_{1}\dots\gamma_{k}}{}_{\delta_{1}\dots\delta_{l}})\frac{\partial}{\partial x^{\gamma_{1}}}\otimes \dots \otimes \frac{\partial}{\partial x^{\gamma_{k}}}\otimes dx^{\delta_{1}}\otimes \dots \otimes dx^{\delta_{l}}$$

$$+ T^{\gamma_{1}\dots\gamma_{k}}{}_{\delta_{1}\dots\delta_{l}}\Gamma^{\beta}{}_{\alpha\gamma_{1}}\frac{\partial}{\partial x^{\beta}}\otimes \dots \otimes \frac{\partial}{\partial x^{\gamma_{k}}}\otimes dx^{\delta_{1}}\otimes \dots \otimes dx^{\delta_{l}}$$

$$+ \dots + T^{\gamma_{1}\dots\gamma_{k}}{}_{\delta_{1}\dots\delta_{l}}\Gamma^{\beta}{}_{\alpha\gamma_{k}}\frac{\partial}{\partial x^{\gamma_{1}}}\otimes \dots \otimes \frac{\partial}{\partial x^{\beta}}\otimes dx^{\delta_{1}}\otimes \dots \otimes dx^{\delta_{l}}$$

$$- T^{\gamma_{1}\dots\gamma_{k}}{}_{\delta_{1}\dots\delta_{l}}\Gamma^{\delta_{1}}{}_{\alpha\beta}\frac{\partial}{\partial x^{\gamma_{1}}}\otimes \dots \otimes \frac{\partial}{\partial x^{\gamma_{k}}}\otimes dx^{\beta}\otimes \dots \otimes dx^{\delta_{l}}$$

$$- \dots - T^{\gamma_{1}\dots\gamma_{k}}{}_{\delta_{1}\dots\delta_{l}}\Gamma^{\delta_{l}}{}_{\alpha\beta}\frac{\partial}{\partial x^{\gamma_{1}}}\otimes \dots \otimes \frac{\partial}{\partial x^{\gamma_{k}}}\otimes dx^{\delta_{1}}\otimes \dots \otimes dx^{\delta_{l}}.$$

Therefore, considering the $\frac{\partial}{\partial x^{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{j_1} \otimes \cdots \otimes dx^{j_l}$ component of the above expression (noticing that, in each summand involving Γ , an index of Γ is contracted with one index of T, and we are free to rename those indices as we please), we obtain

$$(\nabla_{\frac{\partial}{\partial x^{a}}}T)^{i_{1}\dots i_{k}}{}_{j_{1}\dots j_{l}} = \partial_{a}T^{i_{1}\dots i_{k}}{}_{j_{1}\dots j_{l}} + \Gamma^{i_{1}}_{ab}T^{bi_{2}\dots i_{k}}{}_{j_{1}\dots j_{l}} + \dots + \Gamma^{i_{k}}_{ab}T^{i_{1}\dots i_{k-1}b}{}_{j_{1}\dots j_{l}} - \Gamma^{b}_{aj_{1}}T^{i_{1}i_{2}\dots i_{k}}{}_{bj_{2}\dots j_{l}} - \dots - \Gamma^{b}_{aj_{l}}T^{i_{1}\dots i_{k}}{}_{j_{1}\dots j_{l-1}b}.$$

5.4 Let $(\overline{\mathcal{M}}, \overline{g})$ be a *Riemannian* manifold (i.e. \overline{g} is positive definite) and let us define the Lorentzian manifold (\mathcal{M}, g) so that $\mathcal{M} = \mathbb{R} \times \overline{\mathcal{M}}$ and g is the product metric $g = -(dt)^2 + \overline{g}$; this means that, for every local coordinate chart (x^1, \ldots, x^n) on $\mathcal{U} \subset \overline{\mathcal{M}}$, if we extend it to a local coordinate chart (t, x^1, \ldots, x^n) on $\mathbb{R} \times \mathcal{U} \subset \mathcal{M}$ so that t is simply the projection on the \mathbb{R} factor, then

$$g = -dt^2 + \bar{g}_{ij}dx^i dx^j.$$

Show that a curve $\gamma:(0,1)\to (M,g)$ is a geodesic (for the Levi-Civita connection of g) if and only, in any local coordinate system $(t;x^1,\ldots,x^n)$ as above, if it can be written in the form

$$\gamma(s) = (t(s); \bar{\gamma}^i(s))$$

where $t(s) = \lambda_1 s + \lambda_0$ for some $\lambda_1, \lambda_0 \in \mathbb{R}$ and $\bar{\gamma} : (0,1) \to \overline{\mathcal{M}}$ is a geodesic of $(\overline{\mathcal{M}}, \bar{g})$.

Solution. For any $p \in \mathcal{M}$, let $(x^0, x^1, \dots, x^n) = (t, x^1, \dots, x^n)$ be a local coordinate system around p which is as described in the statement of the exercise. We will adopt the following convention: We will use Greek letters (i.e. $\alpha, \beta, \gamma, \dots$) for indices ranging from 0 to n and Latin letters (i.e. i, j, k, \dots) for indices ranging from 1 to n. With this notation, the components $g_{\alpha\beta}$ of g take the form

$$g_{00} = -1, \quad g_{0i} = 0, \quad g_{ij} = \bar{g}_{ij}.$$

G. Moschidis 9 Oct. 2024

Therefore, we can also calculate that the components $g^{\alpha\beta}$ of the inverse matrix of [g] take the form

$$g^{00} = -1, \quad g^{0i} = 0, \quad g^{ij} = \bar{g}^{ij}$$

(where \bar{g}^{ij} are the components of the inverse matrix of $[\bar{g}_{ij}]$).

Let us, now turn to calculating the Christoffel symbols $\Gamma_{\alpha\beta}^{\delta}$ of g. Using the formula

$$\Gamma^{\delta}_{\alpha\beta} = \frac{1}{2} g^{\delta\lambda} (\partial_{\alpha} g_{\lambda\beta} + \partial_{\beta} g_{\lambda\alpha} - \partial_{\lambda} g_{\alpha\beta}),$$

we can readily verify that

$$\Gamma^{\delta}_{\alpha\beta} = 0$$
 when at least one of α, β, δ is 0

and

$$\Gamma_{ij}^k = \bar{\Gamma}_{ij}^k \quad \text{when } i, j, k \in \{1, \dots, n\},$$

where $\bar{\Gamma}^k_{ij}$ are the Christoffel symbols of \bar{g} .

Let $\gamma:(0,1)\to\mathcal{M},\ \gamma(s)=\left(x^0(s),x^1(s),\ldots,x^n(s)\right)$ be a geodesic of g. Thus, the components of γ satisfy the geodesic ODE

$$\ddot{x}^{\alpha} + \Gamma^{\alpha}_{\beta\delta}\dot{x}^{\beta}\dot{x}^{\delta} = 0.$$

Applying the above relation for $\alpha = 0$ and using the fact that (as we calculated) $\Gamma^0_{\beta\gamma} = 0$, we obtain

$$\ddot{x}^0(s) = 0 \Rightarrow x^0(s) = \lambda_1 s + \lambda_0 \text{ for some } \lambda_0, \lambda_1 \in \mathbb{R}.$$

Similarly, applying the above relation for $\alpha = k \in \{1, ..., n\}$, we obtain

$$0 = \ddot{x}^{k} + \Gamma^{k}_{\beta\delta}\dot{x}^{\beta}\dot{x}^{\delta}$$

$$= \ddot{x}^{k} + \Gamma^{k}_{ij}\dot{x}^{i}\dot{x}^{j} + \Gamma^{k}_{i0}\dot{x}^{i}\dot{x}^{0} + \Gamma^{k}_{0j}\dot{x}^{0}\dot{x}^{j} + \Gamma^{k}_{00}\dot{x}^{0}\dot{x}^{0}$$

$$= \ddot{x}^{k} + \bar{\Gamma}^{k}_{ij}\dot{x}^{i}\dot{x}^{j} + 0,$$

i.e. the curve $s \to (x^1(s), \dots, x^n(s))$ satisfies the geodesic equation with respect to the metric \bar{g} .

Remark. The above proof can be easily generalised to the case of a pseudo-Riemannian manifold (\mathcal{M}, g) which is the product of the pseudo-Riemannian manifolds (\mathcal{M}_1, g_1) and (\mathcal{M}_2, g_2) . In that case, the projections γ_1 and γ_2 of any geodesic γ of (\mathcal{M}, g) on \mathcal{M}_1 and \mathcal{M}_2 , respectively, are geodesics for g_1 and g_2 ; the proof uses the fact that, in any product coordinate system $(x^1, \ldots, x^{n_1}; y^1, \ldots, y^{n_2})$ on \mathcal{M} (where (x^1, \ldots, x^{n_1}) and (y^1, \ldots, y^{n_2}) are local coordinates on \mathcal{M}_1 and \mathcal{M}_2 , respectively), any Christoffel symbol $\Gamma_{\alpha\beta}^{\delta}$ with mixed indices (i.e. with indeices belonging to both (x^1, \ldots, x^{n_1}) and (y^1, \ldots, y^{n_2})) has to vanish.

5.5 In this exercise, we will prove that there exist compact Lorentzian manifolds which are **geodesically incomplete** (recall that, as a consequence of the Hopf–Rinow theorem in Riemannian geometry, every compact Riemannian manifold is geodesically complete). Consider the manifold $\mathcal{M} = \mathbb{R}^2 \setminus 0$ equipped with the metric

$$g = \frac{1}{u^2 + v^2} du dv.$$

G. Moschidis9 Oct. 2024

- (a) Verify that (\mathcal{M}, g) is a smooth Lorentzian manifold and that the map $(u, v) \to (\lambda \cdot u, \lambda \cdot v)$ is an isometry for every $\lambda \neq 0$.
- (b) Consider the group of isometries $\Gamma = \{(u, v) \to (2^k u, 2^k, v), k \in \mathbb{Z}\}$. Show that the quotient space \mathcal{M}/Γ is a compact manifold. Show also that \mathcal{M}/Γ inherits a natural metric \tilde{g} from (\mathcal{M}, g) so that the quotient map $(\mathcal{M}, g) \to (\mathcal{M}/\Gamma, \tilde{g})$ is a local isometry.
- (c) Show that the map $(\mathcal{M}, g) \to (\mathcal{M}/\Gamma, \tilde{g})$ maps geodesics to geodesics. Compute the geodesic equation on (\mathcal{M}, g) and deduce that $(\mathcal{M}/\Gamma, \tilde{g})$ contains a geodesic $\gamma: (a, b) \to \mathcal{M}/\Gamma$ with $b < +\infty$ which cannot be extended beyond t = b.

Solution. (a) It is straightforward to verify that g is a smooth Lorentzian metric on the smooth manifold $\mathcal{M} = \mathbb{R}^2 \setminus 0$ (in fact, it is conformal to the Minkowski metric on $\mathbb{R}^2 \setminus 0$). For any $\lambda \in \mathbb{R} \setminus 0$, we can readily compute that the map $T_{\lambda} : \mathcal{M} \to \mathcal{M}$, defined by

$$T_{\lambda}(u,v) = (\lambda u, \lambda v),$$

is a diffeomorphism satisfying

$$(T_{\lambda})_* g = \frac{1}{(\lambda u)^2 + (\lambda v)^2} d(\lambda u) d(\lambda v)$$
$$= \frac{1}{u^2 + v^2} du dv$$
$$= g.$$

Therefore, T_{λ} is an isometry of (\mathcal{M}, g)

(b) Let's recall first a few things about the quotient of a manifold by a subgroup of diffeomorphisms: Let G be a subgroup of $Diff(\mathcal{N})$ for a smooth manifold \mathcal{N} . Setting, for any point $p \in \mathcal{N}$,

$$[p]_G \doteq \{q \in \mathcal{N} : q = F(p) \text{ for some } F \in G\},$$

then the set

$$\mathcal{N}/G \doteq \{[p]_G : p \in \mathcal{N}\}$$

(which is called the quotient of \mathcal{N} by the action of G), equipped with the quotient topology, has the structure of a smooth manifold if and only if, for any $p \in \mathcal{N}$, there exists an open neighborhood $\mathcal{U} \subset \mathcal{N}$ of p such that

$$\mathcal{U} \cap F(\mathcal{U}) = \emptyset \quad \text{for all } F \in G$$
 (3)

(it is straightforward to verify that, for any $p \in \mathcal{M}$, if $\Phi : \mathcal{V} \to \mathbb{R}^n$ is a smooth coordinate chart on a neighborhood $\mathcal{V} \subset \mathcal{U}$ of p, then the collection of coordinate charts

$$\tilde{\Phi} = \left\{ \Phi \circ F^{-1} : F \in G \right\}$$

is a G-invariant set of coordinate charts on neighborhoods of all the points in $[p]_G$ and can be used to construct a coordinate chart around $[p]_G$ in \mathcal{N}/G). With this manifold structure on \mathcal{N}/G , the

G. Moschidis9 Oct. 2024

quotient map $\pi: \mathcal{N} \to \mathcal{N}/G$, $p \to [p]_G$, is a local (but not global) diffeomorphism. Notice that, for any curve $\gamma: (a,b) \to \mathcal{N}/G$, the preimage of γ in \mathcal{N} consists of the family of curves

$$\pi^{-1}(\gamma) = \bigcup_{F \in G} \gamma_F,$$

satisfying

$$F_1(\gamma_{F_2}) = \gamma_{F_1 \circ F_2}$$
, for all $F_1, F_2 \in G$.

By considering the tangent vectors to such curves, we infer the following statement about $T(\mathcal{N}/G)$: For any $p \in \mathcal{N}$ and any tangent vector $v \in T_{[p]_G}(\mathcal{N}/G)$, there exists a family of tangent vectors $v_F \in T_{F(p)}\mathcal{N}$, $F \in G$, such that

$$\pi^*(v_F) = v$$
 for all $F \in G$

and satisfying

$$F_1^*(v_{F_2}) = v_{F_1 \circ F_2}$$
 for any $F_1, F_2 \in G$.

Returning to our case (where $\mathcal{N} = \mathcal{M}$ and $G = \Gamma$), in order to verify that \mathcal{M}/Γ is a compact manifold, it suffices to show that there exists a compact subset $\mathcal{K} \subset \mathcal{M}$ such that the quotient map π is onto when restricted to \mathcal{K} (compactness of \mathcal{M}/Γ in this case follows from the fact that, since π is continuous, $\pi(\mathcal{K})$ is necessarily compact). We can readily verify that

$$\mathcal{K} = \{(u, v) \in \mathbb{R}^2 \setminus 0 : \frac{1}{2} \leqslant u^2 + v^2 \leqslant 2\}$$

has this property (which can be equivalently reexpressed as the statement that, for every $p \in \mathbb{R}^2 \setminus 0$, there exists an $F \in \Gamma$ such that $F(p) \in \mathcal{K}$).

We will now use the fact that Γ is in fact a group of isometries to deduce that the quotient manifold \mathcal{M}/Γ admits a quotient metric \tilde{g} . It is natural to define, for any $[p]_G \in \mathcal{M}/\Gamma$ and any $v, w \in T_{[p]_G} \mathcal{M}/\Gamma$,

$$\tilde{g}(v, w) \doteq g(v_F, w_F) \quad \text{for all } F \in \Gamma$$
(4)

(see the the discussion above for the notation v_F , w_F). The above definition, of course, makes sense only when the right hand side of (4) is the same for all $F \in \Gamma$; this is true precisely when Γ is a group of isometries of (\mathcal{M}, g) , since then $g(v_F, w_F) = g(F^*v_1, F^*v_2)$ is equal to $g(v_1, w_1)$ (1 being the identity element in Γ). Moreover, since $\pi^*(v_F) = v$, (4) trivially implies that, in this case, the quotient map π is a local isometry.

Remark. The above argument works in the case of any group of isometries G acting on a pseudoriemannian manifold (\mathcal{N}, g) in a way that (3) holds.

(c) In general, if $\Psi: (\mathcal{N}_1, g_1) \to (\mathcal{N}_2, g_2)$ is a local isometry, then, for any $X, Y \in \Gamma(\mathcal{N}_1)$, we have $\nabla_{\Psi^*X}^{(\mathcal{N}_2)}(\Psi^*Y) = \nabla_X^{(\mathcal{N}_1)}Y$ (where $\nabla^{(\mathcal{N}_i)}$ denotes the Levi-Civita connection of (\mathcal{N}_i, g_i) ; this can be readily verified using the formula of Kozul for any vector fields U, V, W:

$$2g_i \left(\nabla_{U}^{(\mathcal{N}_i)} V, W \right) = U \left(g(V, W) \right) + V \left(g(U, W) \right) - W \left(g(U, V) \right) - g([V, W], U) - g([U, W], V) + g([U, V], W)$$

(using $U = X, V = Y, W = Z \in \Gamma(\mathcal{N}_1)$ for i = 1 and $U = \Psi^*X, V = \Psi^*Y, W = \Psi^*Z$ for i = 2). Thus, if $\gamma : I \to \mathcal{N}_1$ is a geodesic of g_1 , i.e. satisfies $\nabla_{\dot{\gamma}}^{(\mathcal{N}_1)}\dot{\gamma} = 0$, then $\nabla_{\Psi^*\dot{\gamma}}^{(\mathcal{N}_2)}(\Psi^*\dot{\gamma}) = 0$, i.e. $\Psi(\gamma)$

EPFL- Fall 2024 SOLUTIONS: Series 5

Differential Geometry IV: General Relativity

G. Moschidis9 Oct. 2024

is a geodesic of (\mathcal{N}_2, g_2) . Therefore, since, in our case, the quotient map $\pi : \mathcal{M} \to \mathcal{M}/\Gamma$ is a local isometry, it maps geodesics to geodesics.

In the (u, v) coordinate system on \mathcal{M} , we can readily compute that the Christoffel symbols of the Levi-Civita connection of g take the following form:

$$\Gamma^{u}_{uu} = -\frac{2u}{u^2 + v^2}, \quad \Gamma^{v}_{vv} = -\frac{2v}{u^2 + v^2}, \quad \Gamma^{u}_{uv} = \Gamma^{u}_{vv} = \Gamma^{v}_{uv} = \Gamma^{v}_{uu} = 0.$$

Therefore, the geodesic equation takes the following form: If $s \to (u(s), v(s))$ is a geodesic of (\mathcal{M}, g) , then

$$\ddot{u} - \frac{2u}{u^2 + v^2} (\dot{u})^2 = 0,$$

$$\ddot{v} - \frac{2v}{u^2 + v^2} (\dot{v})^2 = 0.$$

It can be easily verified that the curve $s \to (u(s), v(s)) = (\frac{1}{s}, 0)$, $s \in (-\infty, 0)$ is a null geodesic of (\mathcal{M}, g) , which is maximally extended (since, as a subset of \mathbb{R}^2 , the limit point of this curve is (0, 0) as $s \to 0$). The projection of this curve on \mathcal{M}/Γ is, therefore, a maximally extended geodesic of \tilde{g} .